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Abstract 
The Memory Management (MM) sub-system is the most important parts of the operating 
system. This paper presents a Swapping Tracing System to view the memory activity in 
real time by changing the kernel code with a separate visualization tool. The system 
provides Physical Memory View, Process View and Sector view to inspect the page 
activity exactly in overall respective, which can help administrator analyze the system 
bottleneck or monitor the rush hour of swapping activity. With some statistic analyses, it 
can also help us to design the special swapping algorithm for the special application.  
 
This paper also proposes the property view for each virtual memory page, physical 
memory page, or sector page in hard disk. These information can be known, such as what 
is process attached with this page, what is current status of this page. Especially, you can 
fetch the last ten activities information of a specific process to support detail analysis on 
the special virtual memory of a special process. It can demo the activity of special swap 
algorithm, such as LRU.  

1. Introduction 
The Memory Management subsystem is one of the most important parts of the operating 
system. And virtual memory (VM) is one of the strategies that make the system appear to 
have more memory than it actually have. In a VM system, the addresses are virtual 
addresses that will be converted into physical address based on the information in a set of 
tables. To make this translation easier, all of the addresses are divided into fixed size 
block with same size called page, whatever virtual address or physical address.  
 
Because the physical memory is much less than the virtual memory, for saving the 
physical memory, we can only load virtual pages that are currently used by the 
applications. This is known as Demand Paging. Figure 1 is the abstract model of VM. In 
this function, page table plays an important role for memory mapping between virtual 
memory and physical memory.  
 
Memory mapping is used to map image and data files into a processes address space. In 
memory mapping, the contents of a file are linked directly into the virtual address space 
of a process. Therefore, a virtual page can stay in a sector of the disk, or a physical 
memory page. Any attempt to access a page that is not in physical memory throws a page 
fault exception, which is also thrown for invalid memory access. Moreover, the kernel 
maintains that the number of free pages in physical memory must remain above a certain 
threshold. Some critical kernel processes needed to free resources must be able to obtain 
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memory to complete their task. The kernel wakes the thread “kswapd” to free pages 
every time this threshold is violated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this process, if this discarded page has not been changed, it just need be discarded. 
However, if this page has been modified, the operating system must preserve the contents 
of this page so that it can be accessed at a later time. This type pages are called dirty 
page, and will be saved into a special sort of file called swap file after removing from 
physical memory. There are a lot of algorithms to decide which pages to discard or swap. 
Linux uses the Least Recently Used (LRU) algorithm to decide the discard pages. The 
basic element of this scheme is page aging. And for different application, these 
algorithms will have different action.  
 
It is obvious that memory management sub-system is complex and essential. Proper 
implementation can generate the best result. If the algorithm selects wrong pages in most 
cases when the memory resource is exhausted, it will generate thrashing, and then 
hamper the performance. And a system maybe has the special requirement for the 
performance of an application in this system. Or like this sample we provide behind with 
the special memory using cycle.  For these applications, the activities of the memory 
pages can help designer and developer to make the implementation more efficiently.   
 
A virtual page will have its properties about the disk sector position or the physical 
memory position. And a physical memory can be mapped to a specific process and its 
virtual memory. In the same, a disk sector can be mapped to the specific process and the 
physical memory. For the running efficiency, it can be checked if the connective virtual 
pages are still connective in physical memory. There will be a pre-read algorithm with 
the discarding algorithm. With the page activities tracing, the implementation result of 
these result can be tested with dump information.  
 
This paper provides a useful system to monitor the page activities, which changes the 
kernel source code, and provide separate virtualization application. It shows the swapping 
operation of pages in real time, and also provides the statistic analysis for the activity.  

Figure 1: Abstract Model of VM. 
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2. Design and Implementation 

2.1 Design 
As shown in the Figure 5 below, our work consists mainly of 4 parts: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pftraced client 

Application that generates page fault 

Modified         kernel 

System 
log 

Figure 2: Memory Mapping by Page Table.  
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Figure 3 Design. 

2.1.1 Modified kernel 
The kernel should be modified to be able to trace every page fault, whether it is a swap-in 
or swap-out, and put the concerning information about this pagefault into the system log 
such as the page number being swapped in/out, the sector from/to which the kswapd 
read/write the page contents, the current time that the swap is taking place; what’s more, 
if it is a swap-in, we should know about the Process ID and the virtual address that 
caused this pagefault. We only trace the actual swapping operations. If a page is 
discarded because it is not dirty, we do not record it. 

2.1.2 Daemon that traces page faults 
The daemon should know what has been recorded by the modified kernel, and can send 
the information to remote client such that it can be visualized to the users 

2.1.3 Client doing visualization to the users 
At the remote site, the client program should always be running to retrieve the 
information sent by the daemon and then try to visualize it to the users. 

2.1.4 Applications that generate page faults 
First when we find a pagefault, we can get information about this pagefault by reading 
some kernel data structures defined in the system header file such as “sched.h”, 
“mm.h”, “mmap.h” and so on. After that we can use kernel print function “printk” to 
write whatever we get into system log, which actually is a ring buffer.   

The first thing for the daemon to do is to read the “/proc/meminfo” file to get 
the size of both the main memory and each page. After that, the daemon will have to read 
the system log in realtime. To read from the system log, the daemon should use system 
call  “_syscall3()” to initialize before using the system call “syslog()” to retrieve 
the contents of the system log. 

Having retrieved the messages recorded by the kernel from the system log, the 
daemon will send out the information to the client via UDP datagrams. And since we are 
using UDP instead of TCP to send messages to the client, we may lose some datagrams, 
which means the first message we send to the client containing the sizes of page and 
memory may be lost and thus the client may not be aware of those useful information. So 
we will send out such messages periodically such that the client will always be able to 
know the configuration of the host. 

The client will begin to record the pagefault information after it received the first 
message containing the sizes of memory and page. And for the sake of display, we will 
only show the changes of 2048 pages. 
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2.2 Kernel Hacking 
In order to carry out the proposed functions, we need to modify the linux kernel, inserting 
our code to gather those required information and transfer the information out. Our 
modification needs to be minor such that the kernel is not affected much by our code. 
Also, our modification needs to be precise such that we get the correct information we 
want. So, before we start to make any changes in the kernel, we need to study and 
understand the kernel. 

Fortunately, there are plenty of documents on Internet that helps us a lot to 
understand the swapping in and swapping out mechanism. In linux, swapping in and 
swapping out are implemented independently. When there is a legal page fault, the page 
containing the virtual memory address (VMA) that triggered the page fault will be 
swapped into the physical memory. However, swapping out is performed independently 
from the decision of swapping in. A kernel thread kswapd will swap out some pages 
when the free physical memory is below a predefined threshold. Hence we need to insert 
at least two pieces of code into the linux kernel, one piece to record swapping in 
information, the other to record swapping out information. 

We also need to go through those data structures adopted by linux kernel that 
stores the information of tasks (processes), pages, swap-devices, and so on to dig out the 
required information. 

In this section, we first present the function tree of both swapping in and 
swapping out. Then we present how to gather the required information.  

2.2.1 Function Tree 
In this section we present the function tree of both swapping in and swapping out. The 
knowledge of the control flow of the function tree is a necessity to fetch valid 
information. For example, some data fields are filled only after the call of a function. So 
if we print out the data field before the call, the information we get is meaningless. On 
the other hand, this knowledge also helps us to decide where to insert our code. As what 
we have done, we put only one piece of code for both swapping in and swapping out to 
record all required information at once. In this way, our change to the kernel is very small 
and still we fulfill our goal. 
 When a page fault, which is an exception, occurs, the page fault exception 
handler, do_page_fault() is invoked by the kernel. In do_page_fault(), the 
VMA that triggered the page fault is fetched. After an intensive checking and get rid of 
all possible illegal page faults, do_page_fault() invokes handle_mm_fault(). 
In handle_mm_fault(), it goes though the page table to get the corresponding page 
table entry of the VMA that triggered the page fault. Linux adopts a three-level page 
table, each has name as page directory index, page middle directory and page table index 
respectively. However, in i386 architecture, it actually implemented a two-level page 
table, i.e., the first two levela indices are in fact one level. After get a free page table 
entry (pte), handle_mm_fault() invokes handle_pte_fault() to validate the 
pte by swapping in the pages into physical memory and fill the page number into pte. 
 The structure of pte is very important in virtual memory management [1]. 
According to the status of whether the page is in physical memory or in the disk, the 
meaning of pte is different.  
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Figure 4 The Structure of pte. (From [1]) 

 As shown in Figure 6, if the page is in physical memory, then the first 20 bits are 
the page number of the physical memory where the page is stored. Otherwise, the page is 
in the swap-device, and the first 24 bits is the Swap Offset. As far as we can see from the 
source code, the Swap Offset * 8 is actually the sector number starting from where the 
page is stored in the swap partition, provided we use swap partition but not swap files. In 
the next subsection, we will explain this in details. 
 The real swapping operation is carried out in do_swap_page() which is 
invoked by the handle_pte_fault(). In do_swap_page(), the page is read from 
the swap device and the pte is set to be Present in memory and the first 24 bits is filled 
with the page number of the physical memory storing the page. This is done by 
set_pte(). So it is safe to insert our piece of code right after set_pte() to record 
the page number by extract it from the valid pte. The whole process is shown in Figure 7. 
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Figure 5 Function Tree. (From [1]) 

 The process of the swapping out is also shown in Figure 7. A kernel thread 
kswapd will try to free some memory when the free memory is below a predefined 
threshold by swapping out some “useless” pages. The kswapd keeps checking the size 
of free physical memory and invokes do_try_to_free_pages() when necessary. 
The do_try_to_free_pages() in turn invokes page_launder() to do page 
“laundry”. It scans a LRU list of all pages and tries to either discard the page if it is not 
“dirty” (not written by any processes) or write it back to disk if it is “dirty”. If the page is 
dirty, it will pass the PageDirty(page) and finally reaches the write_page(page), 
which carries out the swapping operation. After that, we can get the page number by page 
– mem_map, where mem_map is a global variable indicates the starting of the the table 
storing all pages. We will discuss it in details later. 
 In the following subsections we present the implementation of our recording 
function. 

2.2.2 Swap In 
We inserted a piece of code in /usr/src/linux/mm/memory.c to record the 
process ID, the VMA, the page number, the sector number and the time when swapping 
in a page. In function do_swap_page() we did the following modification. 
 
 
********************************************* 
static int do_swap_page(struct mm_struct * mm, 
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     struct vm_area_struct * vma, unsigned long address, 
pte_t * page_table, swp_entry_t entry, int 
write_access) 

{ 
 ... 
     set_pte(page_table, pte); 
 
     /* MODIFY START */ 
     if ( pte_present(*page_table) ) { 
          do_gettimeofday(&tv); 
          ncount ++; 
          printk( KERN_INFO 

"pGsWAP_iN %06ld %ld.%06d %05d %08X %08X %08x\n", 
          ncount, tv.tv_sec, tv.tv_usec, 

current->pid, address, 
          ((unsigned long)(pte.pte_low)) >> 12, 

( entry.val >> 8 ) * 8 ); 
     } 
     /* MODIFY END */ 
 ... 
} 
********************************************* 
 
 
 As discussed in the previous subsection, after set_pte(), it is safe to fetch the 
page number from pte. In the following we will explain in details how to get each 
required value. 
 In order to write these information into system log, we need to use printk(), 
which is a kernel version of printf(). All the information sent to printk() is 
passed to system log, and can be fetched by other process by system call syslog().  

Process ID 
 When switched into kernel space, there is a global variable struct task_struct* 
current to store the information of the current task (process). The field current->pid is 
the process ID of the current process. 

Page Number 
 As shown in the previous subsection, the highest 20 bits of a valid pte is the page 
number of the physical memory, provided the page is already Present in physical 
memory. 

VMA 
 This is the variable named as address passed into do_swap_page(). 
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Time 
 A call to do_gettimeofday() will return the current system time. Actually 
do_gettimeofday() is how the kernel implement the system call 
gettimeofday(). Since now we are in kernel space, we can only access the do_ 
version of a system call. 

Sector Number 
 This is the hardest part in our project, we did not find any documents on Internet 
discuss how does linux calculate this. As far as we can see from the source code, if the 
swap device is a swap partition, then sector = Swap Offset * 8, as explained below. 
 As shown in Figure 7, all read and write on swap-device is actually carried out in 
function rw_swap_page(). So we start from it and discovered the following calling 
path: 
  
 rw_swap_page() -> rw_swap_page() -> 

brw_page() -> submit_bh() 
 
 The I/O operation is performed in submit_bh() where we found the following 
statement: 
 
 count =  bh->b_size >> 9; 
 bh->br_sector = bh -> b_blocknr * count; 
 
 Hence, as we guessed, the bh->br_sector indicates the sector number where in the 
swap partitions we put the page. In brw_page(), we found that the bh -> b_blocknr is 
set as the Swap Offset. Also, in create_empty_buffers() we found that bh-
>b_size is set as PAGE_SIZE / zones_used, where PAGE_SIZE is a macro defined as 
4096, and for swap partition, zones_used is set to be 1. This is because that a page is of 
4096 bytes, and a sector is of 512 byes. So linux groups consecutive 8 sectors as a zone to 
store a page. Hence we know that sector = Swap Offset * 8 when swap partition is used. 
 In the kernel, we found that the Swap Offset is stored in two places other than pte, 
the index field of struct page, and the val field of swp_entry_t. Since there is a 
swp_entry_t entry passed into do_swap_page(), we simply use ( entry.val >> 8 ) * 8 
to get the sector number. 
 The file that contains all functions discussed above is listed in Table 1.  
rw_swap_page() /usr/src/linux/mm/page_io.c 
rw_swap_page_base() /usr/src/linux/mm/page_io.c 
Brw_page() /usr/src/linux/fs/buffer.c 
submit_bh() /usr/src/linux/drivers/block/ 

ll_rw_blk.c 
create_empty_buffers() /usr/src/linux/fs/buffer.c 

Table 1 File and Functions 
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2.2.3 Swap Out 
We insert a piece of code in /usr/src/linux/mm/vmscan.c to record the page 
number, the sector number and the time when swapping out a page. In function 
page_launder() we did the following modification. 
 
 
********************************************* 
int page_launder(int gfp_mask, int sync) 
{ 
 ... 

writepage(page); 
 

/* MODIFY START*/ 
     do_gettimeofday(&tv); 
     printk( KERN_INFO "pGsWAPoUT %ld.%06d %08X %08x\n", 

tv.tv_sec, tv.tv_usec, page - mem_map, 
(page -> index >> 8) * 8 ); 

/* MODIFY END */ 
... 

} 
********************************************* 
 
 
 As discussed in previous subsection, after the call of writepage() we are sure 
that the page is written into swap partition and then it is safe to record the required 
information stored in the variable page. In the following, we explain in details how to get 
each required value. 

Page Number 
 In linux kernel, mem_map is a global variable that is the starting address of an 
array of struct page. The interesting thing is that any page stored in the ith position of the 
array mem_map corresponds to a page in physical memory starting at the address i * 
4096. Hence, i is the page number. So here we use page – mem_map to get i, which is the 
page number. 

Time 
 This is the same with what we did in swap in. 

Sector 
 As discussed in previous subsection, page -> index >> 8 is Swap Offset, so we 
use (page -> index >> 8) * 8 to get the sector number. 
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2.3 Daemon 
2.3.1 The goal of pftraced 
The main purpose of pftraced is to set up a real-time connection for the kernel and the 
client. And it’s pftraced’s duty to tell the client program about the sizes of the memory 
and the pages. 
2.3.2 What does pftraced do 

a. Reading “/etc/pftraced.conf”  
To get the ip address of client and server such that it can send messages between 

these two machines. 

b. Initializing as daemon 
To be initialized as a daemon, we should call fork once, and let the parent process 

exit. Then we call “setsid()” and “umask(0)”, and change the working directory of this 
process to root by “chdir(“/”)”. After these 3 steps, we can set this process as a 
daemon. 

c. Reading meminfo 
The second line of “/proc/meminfo” contains memory size and there is a system 

call “getpagesize()” that can return the page size, which can tell us the size of each 
page.  

d. Fetching the result stored by the kernel 
First we should print such a line at the very beginning of the daemon such that we 

can use “syslog()” to read the contents of the system log afterward:  
 

 _syscall3(int, syslog, int, type, char *, bufp, int, len);  
 

When reading the system log via “syslog()”, we should specify the parameters 
as follows: syslog(4, buf, MAXSIZE), in which “4” denotes read and clear it from the 
system log, “buf” specify the buffer to store the result, and MAX_SIZE tells about the 
maximum size to read. 

e. Sending UDP packets to client site 
• resolve the content of the buffer 
Check if it is concerning pagefault. 
Read contents of the buffer, including time and page number, and if it’s a swap-
in, also get the processID and virtual address. 
• compose the send message 
Convert time(unsigned long) into localtime(hour:min:sec.ms) 
• send out the packet 
Set a variable mcount, in each round mcount = (mcount + 1) % 64. When 
mcount == 0, we will compose and send a message containing the sizes of 
memory and page. 
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2.4 Visualization 
In this project, we study and revise the kernel source code to implement the Page Active 
Tracing. For express our working, we implement the visualization part to show our result. 
In this section, we will explain and describe the visualization part. It is developed under  

 
Operation System: Windows 2000 

 Development Tool: Visual Studio 6.0 
 Support Development Tool: BCG library 
 

Actually, the demon application will gather the data periodically from the system 
log, and send the data by UDP packet at port 9091 to the client site where visualization 
application lies. And this application will bind and listen to this port. The data packet is 
organized by the fixed format. In the client site, the application will decode it, and send 
the data to the GUI. The GUI is divided into three basic parts: 

 
Figure 6: The GUI of Page Activity Trace Tool 

In the log info view, it will show any information gotten from the server site. The 
messages use “IN” and “OUT” to separate the Swap-In and Swap-Out Operation. All of 
the data will be showed in this view. And in Page Activity View, the Swap-in and Swap-
out operation will be shown by the animate. Blue color is used to express that there is 
swap-in operation, and Red color is for swap-out operation. Here, for distinguish the 
special condition that there are successive two swap-in and swap-out operation, whatever 
which is early. At the beginning, all of the color will be gray. It means all of these pages 
are not traced. And the relative data information will be 0. After tracing any pages, the 
normal color is white. Now, it should have the different data, and you can see the detail 
information by click the item. The selected status will be green same as the swap in&out 
operation. After clicking the item, the following Data Inspector View will show the 

Log Info View Page Activity View 

Data Inspection View 
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information of this page in detail. It includes the Process ID, Page Number, Swap Time, 
Virtual Memory Address, and Sector information.  

Certainly, to satisfy the view requirement, each view can be showed or hide by 
the menu or tool bar. In the upper Figure, you can see that there are three tool buttons in 
the tool bar. Each one can hide / show one view.  

 
 
 
 

 
 
 
 
 

 
Because the memory size of the testing computer system is bigger, and the size of 

each page is just 4K, we can’t show whole pages in one view. So we separate the 
memory into several bigger blocks each of which has 2048 pages. For inspecting 
different block, we provide a Configuration Dialog to let you change the beginning page 
number. The dialog is simple listed in the following diagram.  
 

 
Figure 8: Configuration Dialog 

 
Certainly, you can hide the tool bar, menu bar, and status bar in the GUI to 

expand the inspector view. All of the command are listed in View menu, the pop up menu 
is  

 

 
Figure 9: Popup Menu of View Menu 

For Data 
Inspectio
n View

For Log 
Info View 

For Page 
Activity 
View 

Figure 7: Tool Bar 
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3. Testing and Evaluation 

3.1 Testing 
Pagefault.c (First Version) 
 
#define TWOPAGES_SIZE 1024 
int memory1[30000][TWOPAGES_SIZE]; 
int memory2[30000][TWOPAGES_SIZE]; 
int main() 
{ 
 int i, j; 
 while (1) 
  for ( j = 0; j < TWOPAGES_SIZE; j++ ) { 
   for ( i = 0; i < 30000; i++ )  
    memory1[i][j] = memory2[i][j] = 0; 
   sleep(1); 
  } 
 return 0; 
} 
 
In this sample, we provide two dimensions array, and iterate this 
array by the first dimension as the inner loop. Each unit in the 
first dimension will have bigger size than a page. So there will 
be one page between two connective swapping activities.  
 
Pagefault.c (Second Version) 
#include <stdio.h> 
#include <sys/types.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <signal.h> 
 
#define ARRAY_SIZE 10142720 //10142720 
int memory1[ARRAY_SIZE]; 
int memory2[ARRAY_SIZE]; 
 
int main() 
{ 
 int i, j, k, l, m; 
 long n; 
 pid_t first, second; 
 
 first = fork(); 
 if(first == -1 ) { 
  printf("fork error!\n"); 
 } 
 
 if (first==0){ 
  //child 
  printf("enter first child!\n"); 
  while(1) { 
   for (n = 0; n < ARRAY_SIZE; n++){ 
    memory1[n] = memory2[n] = 0; 
   } 
  } 
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 } 
 else { 
  //parent 
  second = fork(); 
  if( second == -1 ) { 
   printf("fork error!\n"); 
  } 
 
  if(second == 0) { 
   printf("enter second child!\n"); 
   //child 
   while(1) { 
    for (n = 0; n < ARRAY_SIZE; n++){ 
     memory1[n] = memory2[n] = 0; 
    } 
   } 
  } 
  else { 
   //parent 
   i = 1; 
   printf("enter parent process!\n"); 
   while(1) { 
    if( i == 0 ) { 
     kill(first, SIGSTOP); 
     kill(second,SIGCONT); 
     i = 1; 
    } 
    else { 
     kill(second,SIGSTOP); 
     kill(first, SIGCONT); 
     i = 0; 
    } 
    sleep(30); 
   } 
  }   
 } 
 return 0; 
} 

 
We developed a very short but effective program to test. Each memory copy will cause a 
page fault, so there will be many page faults in a very short time. And what is more, since 
it is easy for us to know the rules of page faults generated by this program, it will be fair 
for us to know whether or not our work is correct or not. 

3.2 Evaluation 

Small Size of Daemon 
A major difficulty for this project is that our program may generate pagefault by 

itself and thus affect the result of testing. Our daemon has a small size such that it cannot 
generate too many (if any) page faults when monitoring the system. 
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Realtime Visualization 
By limiting the number of pages to be presented, we are able to realize 

visualization in realtime, which is a desired feature. 

4. Conclusion and Future Work 
We have fulfilled all the requirements of the project. Some possible future work is to 
further reduce the affection of the tracing facility; apply our project to practical 
applications. 
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